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Introduction

1 What is a point process and what’s a random graph?

A Point Process describes how points are distributed across a graph.
Ex: Poisson Point Processes are distributed with Poisson probability in
the x and y coordinates.
Random graphs are random ensembles of vertices and edge.

2 What is a Matérn II Point Process?

Otherwise referred to a hard-core shell point processes, Matérn II point
processes simulate real objects
This is done by giving points a radius and effectively making circles.
Any new point that overlaps an old point deletes the first point to
simulate real objects maintaining space.
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Introduction

1 What is percolation?

Percolation is the study of connected clusters on a random graph.
I am looking for an infinite cluster, or a percolating cluster, in which
vertices extend from the origin into infinity.
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Statement of the Problem

I attempt to find the following values:

1 The critical probability in which an infinite cluster exists for different
factors of r (or the radius required for an edge between vertices)

2 The critical probability in which an infinite cluster exists for different
factors of a (or the radius of each Matérn II point)

3 The critical probability in which an infinite cluster exists for different
factors of p (the probability an edge exists given distance between
points is ≤ r)

4 A function Φ(p, r , a) that approximates the probability Φ that an
infinite cluster exists.

5 The algorithmic complexity of the simulation.
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Motivation

1 The study of graphs is incredibly important to the fields of
epidemiology, some fields of botany, and networking.

2 With increasingly difficult problems, simulation as a method for
solution is becoming increasingly common.

3 Matérn II point processes are a great way to simulate real objects that
take up space.
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Method of Determining Solutions

I used the following methods to complete my research objectives.

1 Develop a simulation in C++ to determine if there exists a
connection to a vertex outside of a set radius from the origin given
different factor levels of p, r , and a.

2 Analyze the results in R, and determine a function for Φ while
checking the residuals of the estimated function.

3 Hone in on a close range in which critical probabilities reside.

4 I will analytically solve for best and worst case complexities of the
algorithm and use Visual Studio analytics for average time complexity.
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Motivation for Analysis

It’s important to find a solution that will quickly simulate this process so
that enough replicates can be found for strong certainty.
Example of simulation time problem:

1 Time Passed for 1000 R Simulations in Parallel: ≈Six Hours

2 Time Passed for 1000 C++ Simulations in Parallel: ≈Three Minutes

This comes from the methods used in R packages not being optimized
complexity-wise and compiler optimizations.
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Complexity Analysis: C++ Algorithm

Primary complexity of C++ algorithm comes from the Matérn II Thinning
Process.

Primary Operation - Comparison: Distance(Point1, Point2 ¡ a)

(i from 1 to n - 1) and (j from i + 1 to n)

Computations = n(n+1)
2

The other complexity comes from creating the adjacency matrix

Primary Operation - Allocating to Adjacency Matrix by Comparison

distance(point1, point2) ¡ r and (random number between 0 and 1) ¡
p

(i from 1 to nII − 1 and (j from i + 1 to nII )

Computations = 2(nII (nII +1)
2 ) = nII (nII + 1)

Note that average graph traversal time is n
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Overall Complexity

Note that n is the initial number of points while nII is the number of
points after Matérn II thinning.

n(n + 1)

2
+ nII (nII + 1) + nII ∈ Θ(n2)

R Problems:

Lack of compiler optimization and spatial usage

R-algorithm to check for paths in graph structure also checked for
shortest path with Floyd’s algorithm by default which is an Θ(n3)
algorithm.

For n > 1,Θ(n2) < Θ(n3), so algorithm speed is improved by a degree of
n times not including spacial complexity issues.
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Visual Results
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Visual Results
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Visual Results

1 The effect of a on p and r ’s probability is pretty clear

2 Logistic Model will need to account for the interactions of a
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Logistic Summary

Full logistic model showed that p and p : a had little impact on model.
Upon removal, the model is thus:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.822189 0.065949 -179.26 <2e-16 ***

r 1.640490 0.012455 131.71 <2e-16 ***

a 2.562077 0.028343 90.39 <2e-16 ***

r:p 0.963367 0.003870 248.93 <2e-16 ***

r:a -1.566532 0.009616 -162.91 <2e-16 ***

r:a:p -0.219323 0.001178 -186.20 <2e-16 ***
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Model Information

1 Model formulated based on training set of 2500 replicates per factor
level.

2 Model training on data set that also has 2500 replicates per factor
level.

3 Does not account for any potential phase shifts that might have
seemed clear in visual representation

4 Model had accuracy on testing set of 97.9%.

Φ(pc , rc , ac) = −11.822 + 1.64rc + 2.56ac + .96rcpc − 1.57rcac − .21rcacpc

for a final decision boundary of

p(Φ) =
1

1 + e−Φ
Cluster

{
exists, p(Φ) ≥ 0.5

does not exist, o/w
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Conclusion

1 The model, while already accurate, received some improvement by
accounting for what appeared to be a clear phase shift in a.

ΦImp. = Φ(p, r , a)1{a < 1/2}
2 Other phase shifts were not seen in this simulation but hopefully

others can be found later

3 ΦImp. improved the accuracy of the model by about .2% giving a final
confidence interval of accuracy at (97.2%, 99.0%) with 95%
confidence.

4 Using new knowledge of Generalized Linear Models, this model can
likely be improved(or simplified).
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